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Abstract. The degeneracies in the energy levels of the n dimensional anisotropic harmonic 
oscillator are examined and related to the representations of SU(n). The space on which 
the oscillator acts is then decomposed so that the hamiltonian splits up into the direct sum of 
isotropic oscillators. This decomposition fits with the pattern of degeneracies noted earlier. 

1. Introduction 

I f  H ( o )  = H ( o , ,  . . . ,on) represents the hamiltonian of the n dimensional harmonic 
oscillator with frequencies oj, the solutions of 

H ( o ) $  = E'"$ (1) 

E'" = E'"(m) = ( m l o l  + . . . +m,p,), ( 2 )  

are given by 

where each mj can be any positive integer. 
In the case of the isotropic oscillator each oj = M and so 

E = E(m) = M (  m j )  
j =  1 

(3) 

which is clearly degenerate for all dimensions greater than 1. Indeed the degeneracy 
spaces of the n dimensional isotropic oscillator are in 1-1 correspondence with the 
irreducible totally symmetric representations of SU(n), and various reasons can be 
given for the connection between SU(n) and the isotropic oscillator (Baker 1956, Jauch 
and Hill 1940). 

The object of this work is to discuss the degeneracy in the case when the frequencies 
are rationally related. In 4 2 it is shown how the degeneracies correspond to representa- 
tions of SU(n) and in 0 3 the anisotropic oscillator is decomposed in a way which explains 
this correspondence. 

2. The anisotropic oscillator 

The reasons usually given for the connection between SU(n) and the isotropic harmonic 
oscillator break down when the oj are allowed to vary. For instance. the infinitesimal 
generators of SU(n) can still be represented by combinations of the creation and annihila- 
tion operators, as in Jauch and Hill (1940) but these generators only commute with the 
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oscillator hamiltonian when the frequencies are equal. Or again, the oscillator hamil- 
tonian can still be written in a complex form as in Baker (1956) and the unitary transfor- 
mations are still canonical but when the oj vary, these transformations do not always 
leave the oscillator hamiltonian invariant. However, several authors, including Demkov 
(1963) and Vendramin (1968), have noted that there is a connection between unitary 
groups and anisotropic harmonic oscillators and so let us consider the degeneracy spaces 
of such systems. 

Degeneracies of the energy level occur when there are nontrivial solutions of 
n 

1 o j m j  = 0, 
j =  1 

(4) 

which implies a rational relation between the frequencies. Clearly there is greatest 
scope for degeneracy when the frequencies are rationally related, that is, when each 
uj/un is a rational number. Complications arise if some of the oj are rational combina- 
tions of the others, but such cases are equivalent to the sum of various linked rationally 
related systems of lower dimension. 

Thus, the only systems of present interest are those with rationally related frequencies, 
and then it is no loss in generality to multiply all the frequencies by a constant so that 
they are integers with HCF equal to 1. Assume that the LCM of these frequencies is M ,  
and define 

d .  J = Mwr' ;  d = ( d , ,  . . . ,  d,) and d = n d j .  

Using the euclidean algorithm on each coordinate of m we can write 

n 

j =  1 

mj = rii,dj+rj 

where r j ,  riij E 2 and m j ,  f i j  2 0, 0 < r j  < ( d j -  1). From now on this will be written as 

m = f i . d + r  ( 5 )  

wherefi = ( r i i l , .  . . ,e,) and r = (II , .  . . , r,). 
The energy levels are given by E(m) = ( q m )  so that 

E(m) = E ( 6 .  d + r )  = (0, ( f i .  d))+(o, r)  

= (fi, 0 .  d)+(O, r)  

This expression is very similar to the formula for the isotropic case with frequency 
M ;  the only difference is in the extra term (a, r).  Clearly the degeneracy of the rationally 
related case can be calculated from this expression. 

Assume, to start with, that (0, r )  f (0, r') mod M unless r = r' and note that from 
the definition there are d different r allowed. Thus for each of the d values of r ,  there is 
a series of energy levels as 5 varies and the term (0, r )  ensures that for different values 
of r these series of levels are completely disjoint. Now take any r and hold it fixed, 
then by (6)  the degeneracy of E(&. d+r )  is the same as the degeneracy of the level E ( 5 )  
in an isotropic oscillator. But the degeneracy of E(*) corresponds to an irreducible 
representation of SU(n) and so the degeneracies in each of the d series are determined 
by the irreducibles of SU(n). 



A decomposition of the anisotropic oscillator 903 

In some cases (when n > 2) it is possible that ( o , r )  = (o , r ' )mod M even when r 
and r' are not equal, and then at least two of the d series will coincide, except perhaps 
near the ground state. To  be precise, assume there are two such r and r', then for almost 
all r?l E (2')" there is an 6' such that E(rSz. d + r )  = E(rSr' . d+r').  This means that this 
energy E will occur in at least two of the series and so the degeneracy of E will be the 
direct sum of the degeneracy of E within the series determined by r ,  with that within 
the series determined by r' .  Thus there may be extra 'accidental' degeneracy, corre- 
sponding to the direct sum of two or more irreducible representations of SU(n). 

Theorem 1. I f  the energies of the rationally related harmonic oscillator H ( o )  are denoted 
by E" and if E is the energy in the isotropic case, then 

E"(%. d+ r )  = M E ( h )  + (0, r ) .  

Further, the degeneracy spaces of H ( o )  correspond to the representations of SU(n) 
similarly to the isotropic case, except that either several copies of one irreducible 
representation or a reducible representation may occur, and this depends exactly on 
the degeneracy with respect to r of (a, U) mod M .  

3. A decomposition of the anisotropic oscillator 

There are several explanations of this degeneracy in relatively simple cases, for example, 
Demkov (1963), Vendramin (1968) Maiella and Vilasi (1969). However, most of the 
relevant facts can be deduced in the general n dimensional case by considering the 
Hilbert space V on which the hamiltonian acts. Keeping r fixed, let 

Vr = OF,,,; 
si 

where m = rir . d + r  and F,,, is the degeneracy space of H ( o )  corresponding to E"(m). 
There will be d distinct I/* formed as each r j  varies from zero to ( d j -  1) and 

V =  @V*;  
r 

(7) 

where the direct sum contains each of the distinct V r  exactly once. 

tion (7). Indeed, if 
I t  is possible to write down the projection operators which perform the decomposi- 

sin2(araj- rJrrdJ: 
sin2(rj-r;)lrdJ:' 

where ay and a j  are the creation and annihilation step operators in the jth dimension, 
it is routine to check that 

PrPr. = d(r-r')P,.; I = @ P r ;  Pr : V -+ vr. 
r 

Observe that Vr  is isomorphic to Vas the map T, from V' to Vdefined on the basis, 
consisting of the oscillator eigenfunctions f,,,, by 

and extended to  all of Vr by linearity, is unitary because it takes a complete orthonormal 
basis in P on to a complete orthornormal basis in V. 
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Let U = OrT,Pr, then U is unitary and U :  V -, OdV and so consider U H ( o ) U -  ' .  
Let H(Z) represent the hamiltonian of the isotropic oscillator with unit frequency so 
that H(Z)f, = (Xjmj)f, ,  whereas H(w)f, = (&ojmj)fm. A direct calculation on this 
basis shows that the action of U H ( o ) U - '  on OdV is equivalent to the action of 
Or{ MH(Z) +(a, r)} ; that is, 

U H ( o ) U - '  = @ { M H ( Z ) + ( o ,  r ) } .  (8) 
r 

Theorem 2.  The anisotropic harmonic oscillator with rationally related frequencies is 
unitarily equivalent to the direct sum of d isotropic oscillators with frequency M and 
varying ground state energies (a, r). 

As the dynamical symmetry group of each MH(Z) is SU(n), theorem 2 provides some 
justification for calling SU(n) the dynamical symmetry group of H ( o ) ,  but it is not very 
compelling. However, theorem 2 and equation (8) demonstrate the connection with 
SU(n) stated in theorem 1 because they show that every symmetric representation of 
SU(n) will correspond to d degeneracy spaces, one arising from each operator 
MH(Z) + (0, r).  

In fact, each of the degeneracy spaces of MH(Z) + (0, U) corresponds to a particular 
irreducible of SU(n) and so, if it is impossible for (0, r )  = (0, r') mod M ,  (8) shows that 
each degeneracy space of H ( o )  corresponds to an irreducible symmetric representation 
of SU(n). But, if the ground states are degenerate, that is, if (0, r) (a$) mod M ,  
there will be extra 'accidental' degeneracy between the different M H ( Z ) + ( o ,  r). Hence 
it may be necessary to associate a reducible representation of SU(n) with some of the 
degeneracy spaces of H ( o ) .  These remarks explain the relation between the degeneracy 
of the rationally related harmonic oscillator and SU(n) that was stated in theorem 1. 

Theorem 2 can also be related to the work of Maiella and Vilasi (1969). They consider 
the three-dimensional case by introducing step operators on various subspaces, which 
combine to yield the Lie algebra of SU(3) and which commute with the hamiltonian. 

Now let 

A; = U - ' { @ a j S ( u - r ' ) } U ,  
r' 

then A5 acts on V and is the transformation of the rth j step operator on OdV. A; is 
zero except on the subspace V' of V and its action on V is calculated from the well 
known fact that 

which gives 

This is precisely the same as the action which Maiella defined on Vr  by 

As the commutation relations remain invariant under U and as A; is just the trans- 
form of a j  under U, the connection between A;, SU(n) and the hamiltonian follows 
immediately from the relations between a j ,  SU(n) and the isotropic hamiltonian. 
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4. conclusions: 

The decomposition of the anisotropic harmonic oscillator by the unitary map U shows 
how the degeneracy of the rationally related case is connected with representations of 
SU(n). However an elegant account of the degeneracy would require a group theoretical 
explanation or construction of U ,  rather than the present definition in terms of the basis. 
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